Total least-squares reconstruction with wavelets for optical tomography.
نویسندگان
چکیده
In a previous paper [Zhu et al., J. Opt. Soc. Am. A 14, 799 (1997)] an iterative algorithm for obtaining the total least-squares (TLS) solution of a linear system based on the Rayleigh quotient formulation was presented. Here we derive what to our knowledge are the first statistical properties of this solution. It is shown that the Rayleigh-quotient-form TLS (RQF-TLS) estimator is equivalent to the maximum-likelihood estimator when noise terms in both data and operator elements are independent and identically distributed Gaussian. A perturbation analysis of the RQF-TLS solution is derived, and from it the mean square error of the RQF-TLS solution is obtained in closed form, which is valid at small noise levels. We then present a wavelet-based multiresolution scheme for obtaining the TLS solution. This method was employed with a multigrid algorithm to solve the linear perturbation equation encountered in optical tomography. Results from numerical simulations show that this method requires substantially less computation than the previously reported one-grid TLS algorithm. The method also allows one to identify regions of interest quickly from a coarse-level reconstruction and restrict the reconstruction in the following fine resolutions to those regions. Finally, the method is less sensitive to noise than the one-grid TLS and multigrid least-squares algorithms.
منابع مشابه
Truncated Total Least Squares Method with a Practical Truncation Parameter Choice Scheme for Bioluminescence Tomography Inverse Problem
In bioluminescence tomography (BLT), reconstruction of internal bioluminescent source distribution from the surface optical signals is an ill-posed inverse problem. In real BLT experiment, apart from the measurement noise, the system errors caused by geometry mismatch, numerical discretization, and optical modeling approximations are also inevitable, which may lead to large errors in the recons...
متن کاملIterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method.
We present an iterative total least-squares algorithm for computing images of the interior structure of highly scattering media by using the conjugate gradient method. For imaging the dense scattering media in optical tomography, a perturbation approach has been described previously [Y. Wang et al., Proc. SPIE 1641, 58 (1992); R. L. Barbour et al., in Medical Optical Tomography: Functional Imag...
متن کاملGauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation
The radiative transfer equation can be utilized in optical tomography in situations in which the more commonly applied diffusion approximation is not valid. In this paper, an image reconstruction method based on a frequency domain radiative transfer equation is developed. The approach is based on a total variation output regularized least squares method which is solved with a Gauss–Newton algor...
متن کاملWeight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography.
Diffuse optical tomography (DOT) involves estimation of tissue optical properties using noninvasive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and ill-determined problem, so overcoming these difficulties requires regularization of the solution. While the methods developed for solving the DOT image reconstruction procedure have a long history, there is l...
متن کاملTwo-level domain decomposition methods for diffuse optical tomography
Diffuse optical tomography (DOT) in the near infrared involves the reconstruction of spatially varying optical properties of a turbid medium from boundary measurements based on a forward model of photon propagation. Due to the nonlinear nature of DOT, high quality image reconstruction is a computationally demanding problem which requires repeated use of forward and inverse solvers. Therefore, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 15 10 شماره
صفحات -
تاریخ انتشار 1998